Chromatic Perception Mediates the Response to Red, Green, Blue, and Yellow Stimuli among Children from Elementary School in Mexico

Abstract

<p><em>Purpose:</em> We evaluated the responses to chromatic perception (wavelength) stimuli in the visible spectrum among children from an elementary school in Nezahualcoyotl Country, Mexico. <em>Materials and Methods:</em> A software developed ad hoc was used to measure how children perceived the colors blue, green, yellow, and red. The tests were in monocular form, and responses were pooled based on their similarity according to the Pearson correlation index and cluster analysis by unweighted averages. A chi-square test was applied to the groups for significant differences. <em>Results:</em> Data from each wavelength were analyzed in relation to age, sex, and ocular laterality. At a wavelength of 450 nm, children aged 6-7 years old (group 1) of both sexes perceived the wavelength as skewed to the left -9.39 nm, while children aged 8- 11 years old (group 2) visualized a leftward skew of -4.40 nm (P < 0.0001). Then, at 530 nm, shifts of -5.39 and -6.72 nm were reported in the groups 1 and 2 (P < 0.0001), while at 580 nm, the shifts were -2.59 and -2.62 nm for both groups (P < 0.0001). Finally, at 710 nm, the shifts were +2.49 and +2.74 nm (P < 0.0001). <em>Conclusion:</em> At 450 nm, younger children perceived wavelengths far from normal, but, as they aged, their perceptions normalized. At 530nm, children´s perceptions shifted to the left in all cases, getting closer to normality. Finally, at 580 nm, the shift was still leftward but moved to the right at 710 nm in all cases</p>
PDF (Spanish)

References

Santosjuanes B. Estudio del anomaloscopio Heidelberg multicolor como test de detección de defectos cromáticos rojo-verde y azul-amarillo. Tesis de master en optometría avanzada y ciencias de la visión. 2010. Vision Assambly of Behavioral, 1981

Atchison DA, Pedersen CA, Dain SJ, Wood JM. Traffic signal color recognition is a problem for both protan and deutan color-vision deficient. Hum. Factors. 2003; 45: 495503

Simunovic MP. Acquired color vision deficiency. Surv. Ophthalmol. 2016; 61: 132155

Urtubia C. Neurobiología de la visión. 2da ed. España: Universidad Politécnica de Cataluña, 1999

Huang JT. Image recolorization for the colorblind. IEEE International Conference on Acoustics, Speech and Signal Processing 2009; 1: 11611164

Valenzuela GM. Anomalías en la visión del color. Ittakus. 2008

Matlin MY, Foley H. Sensación y percepción (3rd Ed). México: Prentice Hall Hispanoamericana S.A. 1996

Pardo FP. Realización y validación de un programa informático para la detección de deficiencias en la visión de los colores. Tesis de licenciatura. Universidad de Extremadura. Badajoz. 2000

Castro L. Estudio epidemiológico de las discromatopsias congénitas en escolares. Rev San Hih Pub. 1992; 66: 273279

Quispe A. Usabilidad Web para usuarios daltónicos. Memoria en Congreso Iberoamericano SOCOTE, Universidad de San Martín de Porres. 1516. 2013

Xie JZ, Tarczy-Hornoch K, Lin J, Cotter SA, Torres M, Varma R, et al. Color vision deficiency in preschool children: the multi-ethnic pediatric eye disease study. Ophthalmology 2014; 121: 14691474

Mota MM, Roldán MI, Trujillo JA, Uribe JR. Prevalencia de las discromatopsias en la zona metropolitana de la Ciudad de México. Ciencia UANL. 2019; 22: 1025

Al Saeidi R, Kernt M, Kreutzer TC, Rudolph G, Neubauer AS, Haritoglou C. Quantitative computerized color vision testing in diabetic retinopathy: A possible screening tool? Oman J. Ophthalmol. 2013; 6: S36S39

Bresnick GH. Diabetic macular edema: A review. Ophthalmology. 1986; 93: 989997

Cabrera Martínez JA, Martínez Ribalta J, Márquez Fernández M, Cabrera Martínez A. Comportamiento de la visión de color en pacientes sospechosos de glaucoma y glaucomatosos como daño precoz de las células ganglionares de la retina. Rev. Cubana Oftalmol. 2007; 20

Niwa Y, Muraki S, Naito F, Minamikawa T, Ohji M.. Evaluation of acquired color visión deficiency in glaucoma using the rabin cone contrast test. Invest. Ophthalmol. Vis. Sci. 2014; 55: 66866690

Gella L. impairment of color vision in diabetes with no retinopathy: Sankara Nethralaya diabetic retinopathy epidemiology and molecular genetics study (SNDREAMS-II, report 3) 2015

Zachi EC, Costa TL, Barboni MTS, Costa MF, Bonci DMO, Ventura DF. Color vision losses in autism spectrum disorders. Front. Psychol. 2017; 8: 1127

Miyahara E, Pokorny J, Smith VC. Incremento de umbral y la discriminación pureza sensibilidades espectrales de colores observadores defectuosos cromosoma X-ligado. Vision Research. 1996; 36: 15971613

Urtubia C. Fisiología de la retina: el mensaje de la primera sinapsis. Rev. Ver. y oír. 2004; 288-291

Muñoz R. Caracterización física de la percepción de colores digitales. Órgano de divulgación científica y tecnológica de la Facultad de Ingeniería de la Universidad de Carabobo. 2001

Correa V, Estupiñán L, Garcia Z, Jiménez O, Prada LF, Rojas A, et al. Percepción visual del rango del color: diferencias entre género y edad. Revista Med. 2007; 15:7-14

Camps. Memoria de color en niños. Memoria en Congreso Alicante, España (sin año)

Werner J. Sensitivity of human foveal color mechanisms throughout the life span. J. Opt. Soc. Am. 1988; 12: 2122-2130

Ellis L, Ficek C. Personality and individual differences. Pergamon. 2001; 1375-1379

Sokhal RR, Rohlf FJ. Biometry: The principles and practice of statistics in biological research. WH Freeman. 1995

Orlocci L, Kenkel N. Introduction to Data Analysis. International Cooperative Publish House. Springer. 1985

Keywords

perception of color
wavelength
chromatic childhood vision
dyschromatopsia